If tanA-cotA=a and cosA+sinA=b, then show that (a^2+4)(b^2-1)^2=4
Answers
Answered by
4
(a²+4)(b²-1)²=4
Step-by-step explanation:
Given
tan A - cot A =a
⇒(tan A - cot A)² =a² [ squaring both sides]
⇒tan²A+cot²A-2 tan A cot A= a²
⇒tan²A+cot²A-2 =a²
And
cos A+sin A= b
⇒(cos A+sin A)²= b² [ squaring both sides]
⇒cos²A+sin²A+2sinAcosA= b²
⇒1+2sinAcosA= b²
L.H.S= (a²+4)(b²-1)²
=(tan²A+cot²A-2+4)(1+2sinAcosA-1)²
=(tan²A+cot²A+2)4sin²A cos²A
=tan²A.4sin²A cos²A+cot²A.4sin²A cos²A+2.4sin²A cos²A
=4 sin⁴A +4 cos⁴A+8 sin²A cos²A
=4(sin⁴A + cos⁴A+2 sin²A cos²A)
=4(sin²A+cos²A)²
=4.1
=4 = R.H.S (Proved)
Similar questions