Math, asked by amitmalhotra9313, 10 days ago

if tana + cota/tana - cota = 2 then find the the value of sin a​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:\dfrac{tana + cota}{tana - cota}  = 2

\rm :\longmapsto\:tana + cota = 2tana - 2cota

\rm :\longmapsto\:tana  - 2tana =  - cota - 2cota

\rm :\longmapsto\:  - tana =  - 3cota

\rm :\longmapsto\:   tana =  3cota

\rm :\longmapsto\:   tana =  \dfrac{3}{tana}

\rm :\longmapsto\: {tan}^{2}a = 3

\rm :\longmapsto\:tana =  \sqrt{3}

\rm :\longmapsto\:tana =  tan60 \degree \:

\rm \implies\:a \:  =  \: 60\degree

Hence,

\red{\rm :\longmapsto\:sina = sin60\degree = \dfrac{ \sqrt{3} }{2} \: }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions