Math, asked by ayushsaxena2, 1 year ago

If tanA = cotB , Prove thet A + B = 90°

Answers

Answered by MaheswariS
11

\textbf{Given:}

\tan{A}=\cot{B}

\textbf{To prove:}

A+B=90^{\circ}

\textbf{Solution:}

\text{Consider,}

\tan{A}=\cot{B}

\dfrac{\sin{A}}{\cos{A}}=\dfrac{\cos{B}}{\sin{B}}

\sin{A}\,\sin{B}=\cos{A}\,\cos{B}

\cos{A}\,\cos{B}-\sin{A}\,\sin{B}=0

\text{Using the identity}

\boxed{\bf\,cos(A+B)=cosA\,cosB-sinA\,sinB}

\cos{(A+B)}=0

\implies\bf\,A+B=90^{\circ}

\text{Hence proved}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Answered by rishik1233
3

Answer:

here is ur answer

Step-by-step explanation:

hope it helps u ......

Attachments:
Similar questions
Math, 6 months ago