if tanA = m/n, then find sinA and cosA
Answers
Step-by-step explanation:
Given :-
Tan A = m / n
To find :-
Find Sin A and Cos A ?
Solution:-
Given that:
Tan A = m / n
On squaring both sides then
=> Tan² A = (m/n)²
=> Tan² A = m²/n²
On adding 1 both sides then
=> 1 +Tan² A = 1+(m²/n²)
=> 1+Tan² A = (n²+m²)/n²
=> Sec² A = (m²+n²)/n²
Since , Sec² A - Tan² A = 1
=> Sec A = √[(m²+n²)/n²]
=> Sec A = √(m²+n²) / n
=> 1/Cos A = √(m²+n²) / n
=> Cos A = n/√(m²+n²) -----------(1)
On squaring both sides then
=> Cos² A = [n/√(m²+n²)]²
=> Cos² A = n²/(m²+n²)
On Subtracting above equation from 1 both sides
=> 1 - Cos² A = 1-[n²/(m²+n²)]
=> 1- Cos² A = (m²+n²-n²)/(m²+n²)
=> 1-Cos² A = m²/(m²+n²)
=> Sin² A = m²/(m²+n²)
Since Sin² A + Cos² A = 1
=> Sin A = √[m²/(m²+n²)]
=> Sin A = m/√(m²+n²)------------(2)
Answer:-
The value of Sin A = m/√(m²+n²)
The value of Cos A = n/√(m²+n²)
Used formulae:-
- Sin² A + Cos² A = 1
- Sec² A - Tan² A = 1
- Sec A = 1 / Cos A