if tanA =mtanB than prove that sin(A-B)/sin(A+B)=m-1/m+1.
Answers
Answered by
2
Step-by-step explanation:
= > tanA =mtanB
= > tanA =mtanB
= > tanA/tanB = m
Using componendo dividendo:
= > (tanA+tanB)/(tanA-tanB) = (m+1)/(m-1)
Now,
= > tanA + tanB
= > (sinA/cosA) + (sinB/cosB)
= > ( sinAcosB + sinBcosA )/sinAcosB
= > sin(A+B) /sinAcosB
Similarly,
= > tanA - tanB
= > (sinA/cosA) - (sinB/cosB)
= > ( sinAcosB - sinBcosA )/sinAcosB
= > sin(A-B) /sinAcosB
Continue,
= > (tanA+tanB)/(tanA-tanB) = (m+1)/(m-1)
= > [sin(A+B)/sinAcosB]/[sin(A-B) /sinAcosB] = (m+1)/(m-1)
= > sin(A+B)/sin(A-B) = (m+1)/(m-1)
= > sin(A-B)/sin(A+B) = (m-1)/(m+1)
Proved.
Answered by
1
Answer:
hyyyy pragati how r u?.......
Similar questions
Computer Science,
4 months ago
Hindi,
4 months ago
Social Sciences,
9 months ago
Biology,
1 year ago