If tanA=n tanB and sin A =m sin B, prove that n2 - 1.
Answers
Answered by
6
Correct question :
- If TanA = n Tan B and Sin A = m Sin B , prove that cos² A = m² - 1 / n² - 1.
Proof :
Tan A = n Tan B
Tan B = Tan A / n
Taking the reciprocal
1 / Tan B = n / Tan A
Cot A = n / Tan A _____(1)
Sin A = m Sin B
Sin B = Sin A / m
Taking the reciprocal
1/ Sin B = m / Sin A
Cosec B = m / sin A ____(2)
Using the identity
- cosec² B = 1 + cot² B
- Cosec ² B - cot² B = 1
Putting value of Cosec B and Cot B from equation 2 and 1 respectively
(m / sin A)² - ( n / Tan A )² = 1
m² / Sin² A - n² / Tan ² A = 1
Tan² A = sin² A / cos² A
→ 1/ Tan² A = cos² A / Sin² A
m² / sin² A - n² cos² A / sin² A = 1
m² - n² cos² A = 1 × sin² A
m ² - n² cos² A = sin² A
Using identity
- sin² A + cos² A = 1
- Sin² A = 1 - cos² A
m² - n² cos² A = 1 - cos² A
Rearranging the terms :
m² - 1 = n² cos² A - cos² A
m² - 1 = cos² A ( n² - 1 )
m² - 1 / n² - 1 = cos² A
Or
Cos² A = m² - 1 / n² - 1
Hence proved
Similar questions