Math, asked by Anonymous, 9 months ago

If tanA=n tanB and sinA=m sinB,prove that cos²A=m²-1/n²-1[Don't spam]

Answers

Answered by yashsingh8704
2

Hope it help you.

Mark me as brainlist answer.

Attachments:
Answered by EliteSoul
12

Given

❒ tanA = n tanB --------- (i)

❒ sinA = m sinB ----------(ii)

To prove

cos²A = ( - 1)/( - 1)

Proof

From the second equation :

⇒ sinA = m sinB

m = sinA/sinB --------(iii)

⇒ m² = (sin²A/sin²B) [Squaring both]

sin²B = sin²A/ -------(iv)

Now using 1st equation :

⇒ tanA = n tanB

⇒ sinA/cosA = n (sinB/cosB) [∵ tan∅ = sin∅/cos∅)

⇒ n = (sinA/cosA) × (cosB/sinB)

⇒ n = (sinA/sinB) × (cosB/cosA)

⇒ n = m × (cosB/cosA) [∵ m = sinA/sinB ]

⇒ n cosA = m cosB

⇒ n² cos²A = m² cos²B [Squaring both sides]

⇒ n² cos²A = m²(1 - sin²B) [cos²∅ = 1 - sin²∅]

⇒ n² cos²A = m²[1 - (sin²A/m²)] [From (iv)]

⇒ n² cos²A = m² [(m² - sin²A)/m²]

⇒ n² cos²A = m² - sin²A

⇒ n² cos²A = m² - (1 - cos²A) [∵ sin²A = 1 - cos²A]

⇒ n² cos²A = m² - 1 + cos²A

⇒ n² cos²A - cos² = m² - 1

⇒ cos²A(n² - 1) = m² - 1

cos²A = ( - 1)/( - 1) [Proved]

LHS = RHS [Proved]


BloomingBud: cool
EliteSoul: Thanks :p
Similar questions