If tana=n tanb and sina=m sinb then show that cos²a=m²-1/n²-1
NETHUNITHU:
PLZ CORRECT UR QUESTION
Answers
Answered by
12
Hey mate .
=========
☆ I think the question should be
Prove:-- cos^2A=(n^2−1)/(m^2−1)
Then,
sinA=n.sinB ------(1)
tanA=m.tanB
i.e sinA/cosA=m.sinB/cosB
i.e sinA/sinB=m.cosA/cosB
i.e n.cosB=m.cosA ……..[from (1)]
Squaring both sides gives:
n^2.cos^2B = m^2.cos^2A
i.e n^2.{1−(sin^2A/n^2)} = m^2.cos^2A
[squaring (1)]
i.e n^2−sin^2A = m^2.cos^2A
i.e n^2−1+cos^2A = m^2.cos^2A
[since sin^2A = 1 - cos^2A]
i.e. n^2−1 = m^2.cos^2A−cos^2A
i.e n^2−1 = cos2^A (m^2−1)
Hence, cos^2A = (n^2−1)/(m^2−1)
Hope it helps !!!
=========
☆ I think the question should be
Prove:-- cos^2A=(n^2−1)/(m^2−1)
Then,
sinA=n.sinB ------(1)
tanA=m.tanB
i.e sinA/cosA=m.sinB/cosB
i.e sinA/sinB=m.cosA/cosB
i.e n.cosB=m.cosA ……..[from (1)]
Squaring both sides gives:
n^2.cos^2B = m^2.cos^2A
i.e n^2.{1−(sin^2A/n^2)} = m^2.cos^2A
[squaring (1)]
i.e n^2−sin^2A = m^2.cos^2A
i.e n^2−1+cos^2A = m^2.cos^2A
[since sin^2A = 1 - cos^2A]
i.e. n^2−1 = m^2.cos^2A−cos^2A
i.e n^2−1 = cos2^A (m^2−1)
Hence, cos^2A = (n^2−1)/(m^2−1)
Hope it helps !!!
Answered by
9
Heya friend ✌
Here is ur answer answer .....
=====================
☢if we eliminate B.so ,we have find cosecB and cotB from the given relations and use the identity cosec^2 B-cot^2 B=1..
☣now ,tanA=ntanB....
☣cotB=n/tanA..............1)
and similarly...sinA=msinB
❣sinA=msinB.
➡cosecB=m/sinA......2)
now ,squaring 1) and 2) ,and subtracting the results we get..
m^2/sin^2 A-n^2/tan^2 A =cosec^2 B-cot^2 B
➡m^2/sin^2 A-n^2/sin^2 A/cos^2 A=1...
➡m^2/sin^2 A-n^2*cos^2 A/sin^2 A=1
➡1/sin^2 A【m^2-n^2cos^2 A)=1
➡m^2-n^2cos^2 A=1*sin^2 A
➡m^2-n^2cos^2 A=1-cos^2 A【•°•sin^2 A=1-cos^2 A】
➡-n^2Cos^2 A +cos^2 A=1-m^2【interchanging】
➡cos^2 A(-n^2+1) =(1-m^2)
➡-cos^2 A(n^2-1)=-(m^2-1)
➡cos^2 A(n^2-1)=(m^2-1)【- cancelled】
➡cos^2 A=m^2-1/n^2-1.....prooved ...
☢Hope it helps you...
@Rajukumar1!1☺
Here is ur answer answer .....
=====================
☢if we eliminate B.so ,we have find cosecB and cotB from the given relations and use the identity cosec^2 B-cot^2 B=1..
☣now ,tanA=ntanB....
☣cotB=n/tanA..............1)
and similarly...sinA=msinB
❣sinA=msinB.
➡cosecB=m/sinA......2)
now ,squaring 1) and 2) ,and subtracting the results we get..
m^2/sin^2 A-n^2/tan^2 A =cosec^2 B-cot^2 B
➡m^2/sin^2 A-n^2/sin^2 A/cos^2 A=1...
➡m^2/sin^2 A-n^2*cos^2 A/sin^2 A=1
➡1/sin^2 A【m^2-n^2cos^2 A)=1
➡m^2-n^2cos^2 A=1*sin^2 A
➡m^2-n^2cos^2 A=1-cos^2 A【•°•sin^2 A=1-cos^2 A】
➡-n^2Cos^2 A +cos^2 A=1-m^2【interchanging】
➡cos^2 A(-n^2+1) =(1-m^2)
➡-cos^2 A(n^2-1)=-(m^2-1)
➡cos^2 A(n^2-1)=(m^2-1)【- cancelled】
➡cos^2 A=m^2-1/n^2-1.....prooved ...
☢Hope it helps you...
@Rajukumar1!1☺
Similar questions