Math, asked by prince57711, 10 months ago

if tanA=n tanB and sinA=m then prove cos²A=m²-1/n²-1​

Answers

Answered by sandy1816
20

Answer:

your answer attached in the photo

Attachments:
Answered by Anonymous
213

Given :-

  • \mathsf{ tanA = n.tanB}

To Prove :-

  • \mathsf{cos^2A = \dfrac{m^2 - 1}{n^2 - 1}}

Proof :-

\mathsf\pink{{ \:  \: \:  \:  \:  \:  \: \:tanA = n.tanB}}\\

\qquad\;\; \mathsf{ \boxed{\mathsf{tan\theta = \dfrac{sin\theta}{cos\theta}}}}\\

\:  \: \:  \:  \:  \:  \: \::\implies \sf{\dfrac{sinA}{cosA} = (n)\bigg(\dfrac{sinB}{cosB}\bigg)}\\

\mathsf{We\:  are \: given\pink{ : sinA = m.sinB}}\\

\:  \: \:  \:  \:  \:  \: \::\implies \sf{(m)\bigg(\dfrac{sinB}{cosA}\bigg) = (n)\bigg(\dfrac{sinB}{cosB}\bigg)}\\

\:  \: \:  \:  \:  \:  \: \::\implies \sf{\bigg(\dfrac{m}{cosA}\bigg) = \bigg(\dfrac{n}{cosB}\bigg)}\\

\:  \: \:  \:  \:  \:  \: \::\implies \sf{cosB = \bigg(\dfrac{n}{m}\bigg)(cosA)}\\

\textsf{Squaring on both sides, We get :}\\

\:  \: \:  \:  \:  \:  \: \::\implies \sf{cos^2B = \bigg(\dfrac{n^2}{m^2}\bigg)(cos^2A)\;------\;[1]}\\

\textsf{Now, Consider : \pink{sinA = m.sinB}}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{sinB = \dfrac{sinA}{m}}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{sin^2B = \dfrac{sin^2A}{m^2}\;------\;[2]}\\

\textsf{Adding Both Equations [1] and [2], We get :}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{sin^2B + cos^2B = \bigg(\dfrac{sin^2A}{m^2}\bigg) + \bigg(\dfrac{n^2}{m^2}\bigg)(cos^2A)}\\

\qquad\;\; \mathsf{ \boxed{\mathsf{sin^2\theta + cos^2\theta = 1}}}\\

\qquad\;\; \mathsf{ \boxed{\mathsf{sin^2\theta = 1 - cos^2\theta}}}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{\bigg(\dfrac{1 - cos^2A}{m^2}\bigg) + \bigg(\dfrac{n^2}{m^2}\bigg)(cos^2A) = 1}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{({1 - cos^2A}) + (n^2)(cos^2A) = m^2}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf{(n^2)(cos^2A) - (cos^2A) = (m^2 - 1)}\\

\:  \: \:  \:  \:  \:  \: \::\implies\mathsf{(cos^2A)(n^2 - 1) = (m^2 - 1)}\\

\:  \: \:  \:  \:  \:  \: \::\implies \mathsf\pink{{cos^2A = \dfrac{m^2 - 1}{n^2 - 1}}}\\

  • Hence,( Proved..!)
Similar questions