Math, asked by jainaryan19, 6 months ago

If tanA = n tanB and sinA = msinB, prove that cos A= m2 -1 /n2 -1​

Answers

Answered by tarracharan
2

If tanA = n tanB and sinA = msinB, prove that cos²A= (m² -1)/(n² -1)

tanA = n.tanB

sinA/cosA = n.sinB/cosB

m.sinB/cosA = n.sinB/cosB

cosB = n.cosA/m

sin²A = m².sin²B

1 - cos²A = m²[1 - cos²B]

1 - cos²A = m²[1 - (n².cos²A/m²)]

1 - cos²A = m² - n².cos²A

n².cos²A - cos²A = m² - 1

cos²A = (m² - 1)/(n² - 1)

Similar questions
Math, 6 months ago