If tanA =ntanB and sinA= msinB prove that cos2A=m2-1/n2-1
Answers
Answered by
150
tanA=ntanB
or, 1/tanB=n/tanA
or, cotB=n/tanA -----------(1)
sinA=msinB
or, 1/sinB=m/sinA
or, cosecB=m/sinA -------(2)
Now, cosec²B-cot²B=1
or, m²/sin²A-n²/tan²A=1
or, m²/sin²A-n²/(sin²A/cos²A)=1
or, m²/sin²A-n²cos²A/sin²A=1
or, (m²-n²cos²A)/sin²A=1
or, m²-n²cos²A=sin²A
or, m²-n²cos²A=1-cos²A [∵, sin²A+cos²A=1]
or, -n²cos²A+cos²A=1-m²
or, -cos²A(n²-1)=-(m²-1)
or, cos²A=m²-1/n²-1 (Proved)
or, 1/tanB=n/tanA
or, cotB=n/tanA -----------(1)
sinA=msinB
or, 1/sinB=m/sinA
or, cosecB=m/sinA -------(2)
Now, cosec²B-cot²B=1
or, m²/sin²A-n²/tan²A=1
or, m²/sin²A-n²/(sin²A/cos²A)=1
or, m²/sin²A-n²cos²A/sin²A=1
or, (m²-n²cos²A)/sin²A=1
or, m²-n²cos²A=sin²A
or, m²-n²cos²A=1-cos²A [∵, sin²A+cos²A=1]
or, -n²cos²A+cos²A=1-m²
or, -cos²A(n²-1)=-(m²-1)
or, cos²A=m²-1/n²-1 (Proved)
Answered by
39
Answer:
Step-by-step explanation:
tanA=ntanB
or, 1/tanB=n/tanA
or, cotB=n/tanA -----------(1)
sinA=msinB
or, 1/sinB=m/sinA
or, cosecB=m/sinA -------(2)
Now, cosec²B-cot²B=1
or, m²/sin²A-n²/tan²A=1
or, m²/sin²A-n²/(sin²A/cos²A)=1
or, m²/sin²A-n²cos²A/sin²A=1
or, (m²-n²cos²A)/sin²A=1
or, m²-n²cos²A=sin²A
or, m²-n²cos²A=1-cos²A (sin²A+cos²A=1)
or, -n²cos²A+cos²A=1-m²
or, -cos²A(n²-1)=-(m²-1)
or, cos²A=m²-1/n²-1 (Proved)
Similar questions