Math, asked by chinmay3999, 1 year ago

If tanA=ntanB and SinA = msinB, prove that (see drawing)

Attachments:

Answers

Answered by mathdude500
3

Appropriate Question:

If tanA = ntanB and sinA = msinB, prove that  {cos}^{2}A = \frac{ {m}^{2} - 1 }{ {n}^{2} - 1} \\\\

\large\underline{\sf{Solution-}}

Given that,

\sf \: tanA = n \: tanB \: \implies\sf \: \boxed{\sf \: n = \dfrac{tanA}{tanB}  \: } \\  \\

Also, given that

\sf \: sinA = m\: sinB \: \implies\sf \: \boxed{\sf \: m= \dfrac{sinA}{sinB}  \: } \\  \\

Now, Consider

\sf \: \dfrac{ {m}^{2}  - 1}{ {n}^{2}  - 1}  \\  \\

On substituting the value of m and n we get

\sf \:  =  \: \dfrac{ {\left(\dfrac{sinA}{sinB} \right)}^{2}  - 1}{ {\left(\dfrac{tanA}{tanB} \right)}^{2}  - 1}  \\  \\

can be further rewritten as

\sf \:  =  \: \dfrac{ {\left(\dfrac{sinA}{sinB} \right)}^{2}  - 1}{ {\left(\dfrac{sinA \: cosB}{cosA \: sinB} \right)}^{2}  - 1}  \\  \\

\sf \:  =  \: \dfrac{\dfrac{ {sin}^{2}A }{ {sin}^{2}B }  - 1}{\dfrac{ {sin}^{2} A \:  {cos}^{2} B}{ {cos}^{2} A \:  {sin}^{2} B}  - 1}  \\  \\

\sf \:  =  \: \dfrac{\dfrac{ {sin}^{2}A  -  {sin}^{2}B }{ {sin}^{2}B }}{\dfrac{ {sin}^{2} A \:  {cos}^{2} B -{cos}^{2} A \:  {sin}^{2} B }{ {cos}^{2} A \:  {sin}^{2} B} }  \\  \\

\sf \:  =  \: \dfrac{{sin}^{2} A -  {sin}^{2} B}{{sin}^{2} A  \: {cos}^{2} B - {cos}^{2} A \:  {sin}^{2} B}  \times  {cos}^{2}A \\  \\

\sf \:  =  \: \dfrac{{sin}^{2} A -  {sin}^{2} B}{{sin}^{2} A(1 - {sin}^{2} B) - (1 - {sin}^{2} A) {sin}^{2} B}  \times  {cos}^{2}A \\  \\

\sf \:  =  \: \dfrac{{sin}^{2} A -  {sin}^{2} B}{{sin}^{2} A -  {sin}^{2}A{sin}^{2} B -  {sin}^{2}B + {sin}^{2} A{sin}^{2} B}  \times  {cos}^{2}A \\  \\

\sf \:  =  \: \dfrac{{sin}^{2} A -  {sin}^{2} B}{{sin}^{2} A -  {sin}^{2}B } \times  {cos}^{2}A \\  \\

\sf \:  =  \:   {cos}^{2}A \\  \\

Hence,

\implies\sf \: \dfrac{ {m}^{2}  - 1}{ {n}^{2}  - 1} =  {cos}^{2}A   \\  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sinx =  \dfrac{1}{cosecx} }\\ \\ \bigstar \: \bf{cosx =  \dfrac{1}{secx} }\\ \\ \bigstar \: \bf{tanx = \dfrac{sinx}{cosx}  = \dfrac{1}{cotx} }\\ \\ \bigstar \: \bf{cot x= \dfrac{cosx}{sinx}  = \dfrac{1}{tanx} }\\ \\ \bigstar \: \bf{cosec x = \dfrac{1}{sinx} }\\ \\ \bigstar \: \bf{secx = \dfrac{1}{cosx} }\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\\: \end{array} }}\end{gathered}\end{gathered}\end{gathered} \\  \\

Similar questions