if (tana+seca)=l prove that l^2+l/2l=seca
Answers
Answered by
20
tanA + secA=l
squaring both sides
tan²A+sec²A=l²
as tan²A=sec²A-1
so,
sec²A-1+sec²A=l²
2sec²A-1=l²
(secA+1)(secA-1)=l²-sec²A
sec²-1=l²-sec²A
as sec²A=1/cos²A
(1-cos²A)/cos²A=(l²cos²A-1)/cos²A
1-cos²A=l²cos²A-1
squaring both sides
tan²A+sec²A=l²
as tan²A=sec²A-1
so,
sec²A-1+sec²A=l²
2sec²A-1=l²
(secA+1)(secA-1)=l²-sec²A
sec²-1=l²-sec²A
as sec²A=1/cos²A
(1-cos²A)/cos²A=(l²cos²A-1)/cos²A
1-cos²A=l²cos²A-1
Sakshishivaye12:
Thank u so much
Similar questions