if tanA+secA=l then prove that secA=l2+l/2l
Answers
Answered by
3
Given: tan + sec = l
To Prove : sec =
Proof:
tan+sec = l - - - i)
As we know,
1+tan² = sec²
sec² - tan²= 1
(sec+tan) (sec-tan) =1
sec-tan =
sec-tan = - - - ii)
Adding i) & ii)
sec+tan=l
sec-tan=
2sec = l+
2sec=
sec =
Hence proved!!
#
To Prove : sec =
Proof:
tan+sec = l - - - i)
As we know,
1+tan² = sec²
sec² - tan²= 1
(sec+tan) (sec-tan) =1
sec-tan =
sec-tan = - - - ii)
Adding i) & ii)
sec+tan=l
sec-tan=
2sec = l+
2sec=
sec =
Hence proved!!
#
Similar questions