Math, asked by thanku03, 1 year ago

if tanA+secA=l then prove that secA=l2+l/2l

Answers

Answered by dorri
3
Given: tan + sec = l
To Prove : sec =  \dfrac{l^2+l} {2}

Proof:
tan+sec = l - - - i)

As we know,
1+tan² = sec²
sec² - tan²= 1
(sec+tan) (sec-tan) =1
sec-tan =  \dfrac{1} {tan + sec}
sec-tan =  \frac{1} {l} - - - ii)

Adding i) & ii)
sec+tan=l
sec-tan= \dfrac{1} {l}

2sec = l+ \dfrac{1} {l}
2sec= \dfrac{l^2 +1} {l}
sec =  \dfrac{l^2+1} {2l}

Hence proved!!

#  \underline {Be Brainly}
Similar questions