Math, asked by moizsonipat, 11 months ago

if tanA+secA=m then prove that secA=m^2+1/2 ​

Answers

Answered by Anonymous
6

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

TO ProvE

 \implies \: \boxed{ tanA + secA = m}...........(1) \\  now \: we \: know \: that \\  \implies \boxed{ \red{sec {}^{2} A - tan {}^{2} A = 1}} \\  \implies \: (secA + tanA)(secA - tanA) = 1 \\  \implies \: (m) (secA - tanA) = 1 \\ \implies \:  \boxed{(secA - tanA) =  \frac{1}{m}}..........(2) \\  now \: doing \:( equ {}^{n} (1) + equ {}^{n} (2))...we \: get \\ \implies \:(tanA + secA) +   (secA - tanA) = 1  +  \frac{1}{m}  \\  \implies \: tanA + secA +  secA - tanA =  \frac{m + 1}{m}  \\  \implies2secA = \frac{m + 1}{m}   \\ \implies \: secA = \frac{1 + m}{2m}

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions