if tana+sina=m &tana-sina=n then proved that m^2 - n^2 =4√mn
Answers
Answer:
answer for the given problem is given
Answer:
Step-by-step explanation:
tan a + sin a = m
tan a - sin a = n
m^2 - n^2 = (tan a + sin a)^2 - (tan a - sin a)^2
= tan^2 a + sin^2 a + 2 tan a sin a - (tan^2 a + sin^2 a - 2 tan a sin a)
= tan^2 a + sin^2 a + 2 tan a sin a - tan^2 a - sin^2 a + 2 tan a sin a
= 4 tan a sin a - (1)
4√mn = 4√(tan a + sin a)(tan a - sin a)
= 4√(tan^2 a - sin^2 a)
= 4√(sin^2 a/cos^2 a - sin^2 a)
= 4√sin^2 a( 1/cos^2 a - 1)
= 4 sin a√(sec^2 a - 1)
= 4 sin a√(tan^2 a)
= 4 sin a tan a
= 4 tan a sin a - (2)
From (1) and (2) -
m^2 - n^2 = 4√mn