If tanA+sinA=m and tanA-sinA=n. Show that m^2-n^2=4√mn
Answers
Answered by
3
Answer:
Step-by-step explanation:
LHS :-
(tanA+sinA)²-(tanA-sinA)²
4tanAsinA [(a+b)² - (a-b)²= 4ab]
RHS :-
4√(tanA+sinA)(tanA-sinA)
4√(tan²A-sin²A) √[sin²A/cos²A-sin²A]
4√sin²A-sin²A cos²A÷cosA
4sinA/cosA. √1-cos²A
4tanA. √sin²A cos²A÷cosA
4•sinA/cosA 1-cos²A. ✓sin²A= 4tanAsinA
LHS=RHS
Similar questions