If tanA +sinA =m and tanA -sinA=n show that (m^2-n^2) =\sqrt{16}mn
Answers
Answer:
Solution:
• Given : tanA + sinA = m -------(1)
tanA - sinA = n --------(2)
• To prove : m² - n² = √(16mn)
• Proof :
Adding eq-(1) and (2) , we get ;
=> tanA + sinA + tanA - sinA = m + n
=> 2tanA = m + n --------(3)
Now,
Subtracting eq-(2) from (1) , we get ;
=> (tanA + sinA) - (tanA - sinA) = m - n
=> tanA + sinA - tanA + sinA = m - n
=> 2sinA = m - n -----------(4)
Multiplying eq-(3) and (4) , we get ;
=> 2tanA•2sinA = (m + n)(m - n)
=> 4sinA•tanA = m² - n² -------(5)
Now,
Multiplying eq-(1) and (2) , we get ;
=> (tanA + sinA)(tanA - sinA) = mn
=> tan²A - sin²A = mn
=> sin²A/cos²A - sin²A = mn
=> sin²A(1/cos²A - 1) = mn
=> sin²A(1 - cos²A)/cis²A = mn
=> (sin²A/cos²A)(1 - cos²A) = mn
=> tan²A•sin²A = mn
=> (sinA•tanA)² = mn
=> sinA•tanA = √(mn)
Now ,
Putting sinA•tanA = √mn in eq-(5) , we get ;
=> 4sinA•tanA = m² - n²
=> 4√(mn) = m² - n²
=> √(16mn) = m² - n²
=> m² - n² = √(16mn)