if tanA+sinA=m and tanA-sinA=n then prove that m²-n²=4√mn
Answers
m²- n² = 4 proved
Step-by-step explanation:
Given as :
The trigonometrical function
tan A + sin A = m ........1
tan A - sin A = n ..........2
To prove : m²- n² = 4
According to question
From left hand side
put the value of m and n
i.e m² - n² = ( tan A + sin A )²- ( tan A - sin A )² = [ ( tan² A + sin² A + 2 tan A sin A ) - ( tan² A + sin² A - 2 tan A sin A ) ]
= [ tan² A + sin² A + 2 tan A sin A - tan² A - sin² A + 2 tan A sin A ) ]
= [ ( tan² A - tan² A ) + ( Sin² A - Sin² A ) + 4 tan A sin A
= [ 0 + 0 + 4 tan A sin A ]
= 4 tan A sin A
So, m² - n² = 4 tan A sin A ...........3
From right hand side
i.e 4 = 4 ×
= 4 ×
= 4
= 4
= 4
= 4 sin A ×
= 4 tan A sin A
So, 4 = = 4 tan A sin A ............4
Now, From eq 3 and eq 4 ,
Left hand side = Right hand side
So, m²- n² = 4
Hence, m²- n² = 4 proved . Answer
Answer:
Global warming stresses ecosystems through temperature rises, water shortages, increased fire threats, drought, weed and pest invasions, intense storm damage and salt invasion, just to name a few. Some of Australia's great natural icons, such as the Great Barrier Reef, are already threatened.