If tanA+ sinA= m, tanA- sinA=n
Prove that ( m^- n^)^=16 mn
Answers
Answered by
1
m2 - n2
(tanA + sinA)2 - (tanA - sinA)2
wkt (a+b)2 - (a-b)2 =4ab = 4(tanA * sinA)
now RHS 4 root mn
=4√(mn) = 4√((tanA + sinA)(tanA - sinA))
=4√(tan2A - sin
=4√(sin2A/cos2A - sin2A)
=4√((sin2A-sin2A*cos2A)/cos2A)
= 4√sin2A(1-cos2A)/cos2A
=4*sin2A/cosA
=4*sinA*sinA/cosA
=4tanA * sinA.
(tanA + sinA)2 - (tanA - sinA)2
wkt (a+b)2 - (a-b)2 =4ab = 4(tanA * sinA)
now RHS 4 root mn
=4√(mn) = 4√((tanA + sinA)(tanA - sinA))
=4√(tan2A - sin
=4√(sin2A/cos2A - sin2A)
=4√((sin2A-sin2A*cos2A)/cos2A)
= 4√sin2A(1-cos2A)/cos2A
=4*sin2A/cosA
=4*sinA*sinA/cosA
=4tanA * sinA.
Similar questions