If tanA+sinA=m , tanA-sinA=n, then prove that
m^2-n^2= 4root mn
Answers
Answered by
1
Answer:
Step-by-step explanation:
If tanA + sinA = m and tanA – sinA = n, show that m2 – n2 = 4√(mn)Solution :- LHS = m2 – n2 = (tanA + sinA)2 – (tanA – sinA)2 = tan2A + sin2A + 2tanAsinA – tan2A – sin2A + 2tanAsinA = 4tanA.sinA RHS = 4√(mn) = 4√(tanA + sinA).(tanA – sinA ) = 4√(tan2A – sin2A = 4√(sin2A/cos2A – sin2A) = 4√{(sin2A – sin2Acos2A)/cos2A} = 4√{sin2A(1 – cos2A)/cos2A} = 4√(sin2A.sin2A/cos2A) = 4(sinA.sinA/cosA) = 4.tanA.sinA = LHS
Answered by
3
hey friend!
please find your answer in the attactchment
hope this helps
please mark me the brainliest
please follow me so that i could be notified when you post a question
Attachments:
arnavpandita1:
pata nahi kaha se a jata hai
Similar questions