Math, asked by shikharsharma1812, 13 days ago

If tanA +sinA=P and tanA-sinA=Q to prove P^2-Q^2=4√PQ​

Answers

Answered by sandy1816
2

tana + sina = p \\  \implies( {tana + sina)}^{2}  =  {p}^{2} ...(1) \\  \\ tana - sina = q \\  \implies( {tana - sina)}^{2}  =  {q}^{2} ...(2) \\  \\ (1) - (2) \\  {p}^{2}  -  {q}^{2}  = ( {tan a+ sina})^{2}  - ( {tana - sina)}^{2}  \\   {p}^{2} -  {q}^{2}  = 4 \: tanasina \\  {p}^{2}  -  {q}^{2}  =  \sqrt{ {tan}^{2} a {sin}^{2} a}  \\  {p}^{2}  -  {q}^{2}  = 4 \sqrt{ {tan}^{2} a(1 -  {cos}^{2} a)}  \\  {p}^{2}  -  {q}^{2}  = 4 \sqrt{ {tan}^{2}a -  {tan}^{2} a {cos}^{2} a }  \\  {p}^{2}  -  {q}^{2}  = 4 \sqrt{ {tan}^{2}a -  {sin}^{2}  a}  \\  {p}^{2}  -  {q}^{2}  = 4 \sqrt{(tana + sina)(tana - sina)}  \\  {p}^{2}  -  {q}^{2}  = 4 \sqrt{pq}

Similar questions