If tan@ = 1/2 then find the value of sin 20
Answers
Answered by
3
Step-by-step explanation:
Let theta = x
tan x=1/2 = prep(AB)/base(BC)
Let in right angled triangle B=90° ,prep.(AB) =k unit. then base (BC)= 2k units.
AC^2=AB^2+BC^2
AC^2= k^2 + 4k^2=5k^2
AC (hypotenuse) =k.√5.units
sin x= prep.(AB)/hypo.(AC)
sin x=k units/k.√5.units.
sin x= 1/√5 . , Answer.
Second-Method :-
Formula : sec^2 x = 1+ tan^2 x.
sec^2 x = 1 +(1/2)^2 = 5/4.
or, sec^2 x = 5/4.
or, 1/cos^2 x = 5/4.
or, cos^2 x = 4/5.
or, 1 - sin^2 x = 4/5.
or, sin^2 x = 1 -4/5 = 1/5.
or, sin x = 1/√5. Answer.
Third - Method:-
If tan x= 1/2 . , sin x = ?
we know that:-
Formula:
sin x = tan x/√(1+tan^2 x). , putting tan x = 1/2.
sin x= 1/2/√(1+1/4)= (1/2)/(√5/2) = 1/√5. Answer.
Similar questions