if tanc=tana+tanb/1+tanatanb then show that sin2c=sin2a+sin2b/1+sin2asin2b
Answers
Given : tanc= (tana+tanb)/(1+tanatanb )
To find : Show that sin2c=sin2a+sin2b/1+sin2asin2b
Soluion:
Using Sin2x = 2Tanx /(1 + tan²x)
LHS =
sin2c = 2Tanc /(1 + tan²c)
using tanc= (tana+tanb)/(1+tanatanb )
= 2(tana+tanb)/(1+tanatanb ) / ( 1 + { (tana+tanb)/(1+tanatanb )}²)
= 2(tana+tanb)(1+tanatanb) /( (1+tanatanb)² + (tana+tanb)²)
= 2(tana+ tan²atanb + tanb + tanatan²b ) /( 1 + tan²atan²b + 2TanaTanb + tan²a + tan²b + 2TanaTanb)
= (2tana+ 2tanb + 2tan²atanb + 2tanatan²b ) /( 1 + tan²a + tan²b + tan²atan²b + 4TanaTanb )
RHS = ( sin2a+sin2b)/(1+sin2asin2b)
= (2Tana /(1 + tan²a) + 2Tanb /(1 + tan²b) )/( 1 + (2Tana /(1 + tan²a)) ( 2Tanb /(1 + tan²b))
= ( 2Tana(1 + tan²b) + 2Tanb (1 + tan²a) ) /( (1 + tan²a) (1 + tan²b) + 2Tana2Tanb)
= (2Tana + 2Tanatan²b + 2Tanb + 2tan²atanb) /( 1 + tan²a + tan²b + tan²atan²b + 4TanaTanb )
= (2tana+ 2tanb + 2tan²atanb + 2tanatan²b ) /( 1 + tan²a + tan²b + tan²atan²b + 4TanaTanb )
LHS = RHS
QED
hence proved
sin2c=sin2a+sin2b/1+sin2asin2b
Learn more:
If tan A - tan B = x and cot B - cot A = y , then cot (AB) is equal to
https://brainly.in/question/481093
(1+tan1)(1+tan2)....(1+tan25) y=(1-tan136)
https://brainly.in/question/17663257