If tane + sine = m and tane - sine = n and also men, then prove that m2 - n2 = 4 mn
Answers
Answered by
1
Answer:
l. h.s: m2-n2
=(tane+sine)^-(tane-sine)^
=tan^e+2tane.sine+sin^e-tan^e+2tane.sine-sin^e
=4tane.sine
r. h. s: 4mn
=4(tane+sine) (tane-sine)
=4{tane(tane-sine) +sine(tane-sine)}
=4(tan^e-tane.sine+sine.tane-sin^e)
=4(tan^e-sin^e)
Similar questions