if tangent any point on the curve x⅔+y⅔=a⅔ intersects the coordinate axis In A and B then show that the length AB is constant
Answers
Answered by
3
Answer:
Step-by-step explanation:
Equation of the curve is x
2/3
+y
2/3
=a
2/3
the parametric equations of the curve are x=acos
3
θ,
y=asin
3
θ
⇒
dx
d
=
dθ
dx
dθ
dy
=
a⋅3cos
2
θ(−sinθ)
a⋅3sin
2
θcosθ
=−tanθ
Equation of the tangent at (acos
3
θ,asin
3
θ) is y−asin
3
θ=−tanθ(x−acos
2
θ)
y−asin
3
θ=−xtanθ+a
cosθ
sinθ
cos
3
θ
y−asin
3
θ=−x
cosθ
sinθ
+asinθcos
2
θ
⇒ycosθ+xsinθ=asinθcos
3
θ+a
cosθ
sin
3
θ
⇒xsinθ+ycosθ=asinθcosθ(cos
2
θ+sin
2
θ)
⇒
cosθ
x
+
sinθ
y
=a ( Divided by both side sinθcosθ)
x-intercept =acosθ, y-intercept=asinθ
A(acosθ,0) and B(0,asinθ)
AB=
(acosθ)
2
+(asinθ)
2
=
a
2
(cos
2
θ+sin
2
θ)
=
a
2
=a
∴AB=a, a constant.
Similar questions