if tanh(x)=1/3 then tanh(3x) is
Answers
Answered by
4
Given : tanh(x)=1/3
To Find : tanh (3x)
Solution:
tanh(x)=1/3
tanh(x)= (eˣ - e⁻ˣ )/ (eˣ + e⁻ˣ )
tanh(3x)= (e³ˣ - e⁻³ˣ )/ (e³ˣ + e⁻³ˣ )
(eˣ - e⁻ˣ )/ (eˣ + e⁻ˣ ) = 1/3
=> 3eˣ - 3e⁻ˣ = eˣ + e⁻ˣ
=> 2eˣ = 4e⁻ˣ
=> eˣ = 2e⁻ˣ
=> e³ˣ = 8e⁻³ˣ
tanh(3x)= (e³ˣ - e⁻³ˣ )/ (e³ˣ + e⁻³ˣ )
= (8e⁻³ˣ - e⁻³ˣ )/ (8e⁻³ˣ + e⁻³ˣ )
= 7e⁻³ˣ / 9e⁻³ˣ
= 7/9
tanh (3x) = 7/9
or other method :
tanh(3x)= (3tanhx+tanh³x) /( 1+3tanh²x)
Substitute tanhx = 1/3
= (3(1/3) + (1/3)³) / ( 1 + 3(1/3)²)
= ( 1 + 1/27)/ ( 1 + 1/3)
= (28/27) /( 4/3)
= 7/9
tanh (3x) = 7/9
Learn More:
Show that sinix=isinhx
https://brainly.in/question/11810908
Similar questions