If tano
12/15
then find the value of
1+sin/1-sin
Answers
Answered by
2
Given
→Tanθ = 12/15
To Find
→(1+Sinθ)/(1-Sinθ)
Now Take
→Tanθ = 12/15 = p/b
We have
→Perpendicular(p) = 12 , Base(b)= 15 and Hypotenuse(h) = ?
Using Pythagoras Theorem
→h² = p² + b²
Put the value
→h² = (12)² + (15)²
→h² = 144 + 225
→h²= 369
→h=√(369)
→h = 19.02 ≈ 19
We get
→Sinθ = p/h = 12/19
Put the value on
→(1+Sinθ)/(1-Sinθ)
→( 1 + 12/19)/(1 - 12/19)
→{(19 + 12)/19}/{(19-12)/19}
→{(31)/19}/{(7)/19}
→31/19×19/7
→31/7
Answer
→31/7
Similar questions