If tano= a/b, show that sin²o-cos²o/sin²o+cos²o = a²-b²/a²+b²
Answers
Answered by
13
Given :-
- tano= a/b,
To Prove :-
- sin²o-cos²o/sin²o+cos²o = a² - b² / a² + b²
SOLUTION :
→ Here we can also write tan∅ as sin∅ / cos ∅
Therefore,
→ tan ∅ = a / b
→ Sin∅ / cos ∅ = a / b
Hence, The value of sin ∅ is 'a' and cos ∅ is 'b'
Putting the values :-
→ sin²o-cos²o/sin²o+cos²o = a²-b²/a²+b²
→ (a)² - (b)² / (a)² + (b)² = a²-b²/a²+b²
→ a²-b²/a²+b² = a²-b²/a²+b²
→ LHS = RHS
Hence, Proved !
Similar questions
Social Sciences,
1 month ago
Math,
1 month ago
Hindi,
1 month ago
Science,
3 months ago
English,
3 months ago
Computer Science,
10 months ago
Math,
10 months ago
Science,
10 months ago