Math, asked by 0Backbencher0, 1 month ago

If tano + coto = 2, then show that tan20 + cot20 = 2​

Attachments:

Answers

Answered by Anonymous
8

Given

 \sf \to \: tan \theta + cot \theta = 2

To Prove

 \sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta = 2

Now Take

 \sf \to \: tan \theta + cot \theta = 2

Squaring on both side

 \sf \to \: (tan \theta + cot \theta) {}^{2} = (2) {}^{2}

By using this identities

 \sf \to \: (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

We get

 \sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta + 2 \times tan \theta \times cot \theta = 4

We Know That

 \sf \to \: tan \theta =  \dfrac{sin \theta}{cos \theta}  \\   \\ \sf \to \: cot \theta =  \frac{cos \theta}{ sin \theta}

Now

 \sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta + 2 \times  \dfrac{sin \theta}{cos \theta}  \times  \dfrac{cos \theta}{sin \theta}  = 4

 \sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta + 2 = 4

 \sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta= 4 - 2

\sf \to \: tan {}^{2}  \theta + cot {}^{2}  \theta= 2

Hence Proved

Similar questions