Math, asked by sumananil9466660351, 8 months ago

If tano =
then sin o is equal to
3
4
-4
4
(2)
or
5
5
5
-(1) but not
(3) 23 but not in a
(4) None of these​

Attachments:

Answers

Answered by rohitkr97091
30

Answer:

given, tanthita =-4/5

Step-by-step explanation:

so, we know that ,,tanthita =p/b

and sinthita=p/h

so from Pythagoreans pramey, h=√b2+√p2

after solution h=5

so, Sinthita=p/h=4/5.ans

Answered by amitkumar44481
48

AnsWer :

2 ) - 4 / 5 or 4 / 5.

QuestioN :

 \tt  If  \: tan \,\theta =  \dfrac{ - 4}{3} then,  \: Sin\, \theta  \: Equal \:  to

SolutioN :

 \tt  If  \: tan \,\theta =  \dfrac{ - 4}{3} then,  \: Sin\, \theta  \: Equal \:  to

We know,

 \tt \dagger  \:  \:  \:  \:  \: \boxed{\tt1 + tan^2\,\theta = Sec^2\,\theta}

So,

 \tt :  \implies1 + tan^2\,\theta = Sec^2\,\theta

 \tt :  \implies1 +  \bigg (\dfrac{ - 4}{3}   \bigg)^{2} = Sec^2\,\theta

 \tt :  \implies1 +  \dfrac{ 16}{9}    = Sec^2\,\theta

 \tt :  \implies  \dfrac{  9+ 16}{9}    = Sec^2\,\theta

 \tt :  \implies \dfrac{ 25}{9}    = Sec^2\,\theta

 \tt :  \implies Sec^2\,\theta =  \dfrac{25}{9}

 \tt :  \implies Sec\,\theta = \sqrt{ \dfrac{25}{9} }

 \tt :  \implies Sec\,\theta =  \pm \dfrac{5}{3}

\rule{200}3

☛ We have,

  • Sec θ = 5 / 3 or - 5 / 3.
  • tan θ = - 4 / 3.

 \tt  \bullet \:  \:  \:  \:  \:  Sec\,\theta =   \dfrac{Hypotenuse}{Base}

 \tt  \bullet \:  \:  \:  \:  \:  tan\,\theta =   \dfrac{Perpendicular}{Base}

☛ Where as,

  • Hypentenus = 5 or - 5.
  • Perpendicular = - 4.
  • Base = 3.

\rule{200}3

If We take,

  • Sec θ = 5 / 3.

 \tt  \bullet \:  \:  \:  \:  \:  Sin\,\theta =   \dfrac{Perpendicular}{Hypentenus}

 \tt  \bullet \:  \:  \:  \:  \:  Sin\,\theta =   \dfrac{ - 4}{5}

If We take,

  • Sec θ = - 5 / 3.

 \tt  \bullet \:  \:  \:  \:  \:  Sin\,\theta =   \dfrac{ - 4}{ - 5}

 \tt  \bullet \:  \:  \:  \:  \:  Sin\,\theta =   \dfrac{  4}{5}

Therefore, the correct option is 2 ) - 4 / 5 or 4 / 5.

Similar questions