Math, asked by Anonymous, 6 months ago

If tanØ =40/4 then fjnd secØ and cosØ​

Answers

Answered by anindyaadhikari13
4

Correct Question:-

  • If  \sf \tan(x) =  \frac{40}{9}, then find  \sf \sec(x) and  \sf \cos(x)

Solution:-

Given,

 \sf \tan(x)  =  \frac{40}{9}

We know that,

 \sf { \sec }^{2} (x) = 1 +  { \tan}^{2} (x)

From this relation,, we get,

 \sf \implies \sec(x)  =  \sqrt{1 +  { \tan }^{2}(x) }

Now, putting the value, we get,

 \sf \implies \sec(x)  =  \sqrt{1 + \frac{1600}{81} }

 \sf \implies \sec(x)  =  \sqrt{ \frac{1600 + 81}{81} }

 \sf \implies \sec(x)  =  \sqrt{ \frac{1681}{81} }

 \sf \implies \sec(x)  = \frac{41}{9}

Again, we know that,

 \sf \cos(x)  =  \frac{1 }{ \sec(x) }

So,

 \sf \implies \cos(x)  =  \frac{1 }{{}^{41} / {}_{9} }

 \sf \implies \cos(x)  =  \frac{9}{41}

Answer:-

  1.  \sf \sec(x)  = \frac{41}{9}
  2.  \sf \cos(x)  =  \frac{9}{41}
Similar questions