Math, asked by sushmasahu1197, 2 months ago

if tanq=2 then tan2q will be

Answers

Answered by anindyaadhikari13
3

Solution:

We know that,

 \tt \implies \tan(2x)  =  \dfrac{2 \tan(x) }{1 -  { \tan}^{2}(x)}

Here, it's given that,

 \tt \implies \tan(x)  = 2

Putting the value of tan(x) in the formula, we get,

 \tt \implies \tan(2x)  =  \dfrac{2  \times 2 }{1 -  {2}^{2}}

 \tt \implies \tan(2x)  =  \dfrac{4}{1 -4}

 \tt \implies \tan(2x)  =  \dfrac{4}{ - 3}

 \tt \implies \tan(2x)  =   - \dfrac{4}{3}

Answer:

  • tan(2x) = -4/3

Additional Information:

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.

•••♪

Answered by MoonlightPhoenix
1

✰ Question Given :

  • ➲ If tanq=2 then tan2q will be ?

✰ Required Solution :

✯ Formula used Here :

  • ➲ tan2q = 2tanq / 1 - tan²q

✯ According to Question :

  • ➥ Now , Doing Evaluation

  • ➥ tan2q = 2tanq / 1 - tan²q

  • ➥ 2 × 2 / 1 - (2)²

  • ➥ 4 / 1 - 4

  • ➥ 4 / - 3

✰ Therefore :

➢ tanq = 2 then tan2q will be 4 / - 3

______________________________

Similar questions