If tanq=3/4 then find the value of secQ and cosQ
Answers
Answered by
3
Answer:
we know sec²x - tan²x = 1
so, sec²Q - tan²Q = 1
or, (secQ - tanQ)(secQ - tanQ) = 1
or, (secQ - tanQ) = 1/(secQ + tanQ) = 1/P
now, solve equations ; secQ + tanQ = P and secQ - tanQ = 1/P
e.g., (secQ - tanQ) + (secQ + tanQ) = p + 1/p
2secQ = (p² + 1)/p
secQ = (p² + 1)/2p
cosQ = 2p/(p² + 1) = base/hypotenuse
perpendicular = \sqrt{(p^2+1)^2-(2p)^2}
(p
2
+1)
2
−(2p)
2
= ±(p² - 1)
so, cosecQ = hypotenuse/perpendicular
= ± (p² + 1)/(p² - 1)
Answered by
1
Answer:
if tanQ=3/4 =Prepindicular/Base
H²= P² + B²
H²= 3² +4²
H²=9+16
H²=25
H= 5
Then, SecQ= H/B
= 5/4
CosQ=4/5
Similar questions