Math, asked by bindureddy4876, 1 month ago

If tanQ= p/q find the values of (p sinQ -q cosQ) / (psinQ+ qcosQ)

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \rm \tan(Q)  =  \frac{p}{q}  \\

Now, we have,

 \rm   \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  } \\

Dividing num. and deno. by  \rm\:\cos(Q)

So,

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{ \frac{p\sin(Q) - q \cos(Q) }{ \cos(Q) } }{ \frac{ p\sin(Q)  + q \cos(Q) }{   \cos(Q)   } } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{ \frac{p\sin(Q)}{ \cos(Q) } - \frac{ q \cos(Q) }{ \cos(Q) } }{ \frac{ p\sin(Q)}{ \cos(Q) }  + \frac{ q \cos(Q) }{   \cos(Q)   } } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{ p\tan(Q) -  q }{  p\tan(Q)  + q } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{ p \times  \frac{p}{q}  -  q }{  p \times  \frac{p}{q}  + q } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{   \frac{p^{2} }{q}  -  q }{    \frac{p ^{2} }{q}  + q } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{   \frac{p^{2}  -  {q}^{2} }{q}   }{    \frac{p ^{2} +  {q}^{2}  }{q}  } \\

 \rm  \implies  \frac{p\sin(Q) - q \cos(Q)  }{ p\sin(Q)  + q \cos(Q)  }  =  \frac{   p^{2}  -  {q}^{2}    }{    p ^{2} +  {q}^{2}    } \\

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\:tanQ = \dfrac{p}{q}}

\large\underline{\sf{To\:Find - }}

\boxed{ \rm{  \frac{psinQ - qcosQ}{psinQ + qcosQ}}}

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:tanQ = \dfrac{p}{q}}

\rm :\longmapsto\:\dfrac{sinQ}{cosQ}  = \dfrac{p}{q}

can be rewritten as by multiplying both sides by p/q.

\rm :\longmapsto\:\dfrac{psinQ}{qcosQ}  = \dfrac{ {p}^{2} }{ {q}^{2} }

Now, apply Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{psinQ + qcosQ}{psinQ - qcosQ}  = \dfrac{ {p}^{2}  +  {q}^{2} }{ {p}^{2}  -  {q}^{2} }

Now, by applying invertendo, we get

\rm :\longmapsto\:\dfrac{psinQ  -  qcosQ}{psinQ  +  qcosQ}  = \dfrac{ {p}^{2}   -   {q}^{2} }{ {p}^{2}  +  {q}^{2} }

Result Used :-

\red{\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d} , \: then}

\boxed{ \rm{  \frac{a + b}{b}  =  \frac{c + d}{d}  \: is \: called \: componendo}}

\boxed{ \rm{  \frac{a  -  b}{b}  =  \frac{c  -  d}{d}  \: is \: called \: dividendo}}

\boxed{ \rm{  \frac{a + b}{a - b}  =  \frac{c + d}{c - d}  \: is \: called \: componendo \: and \: dividendo}}

\boxed{ \rm{ \dfrac{b}{a}  = \dfrac{d}{c}  \: is \: called \: invertendo}}

Additional Information :-

\boxed{ \rm{  {sin}^{2}x +  {cos}^{2}x = 1}}

\boxed{ \rm{  {sec}^{2}x  -   {tan}^{2}x = 1}}

\boxed{ \rm{  {cosec}^{2}x  -   {cot}^{2}x = 1}}

Similar questions