If tantheta = 12/5, then find the value of 1+sintheta/1-sintheta
Answers
Answered by
112
Topic : Trigonometry
Given : tan∅ = 12/5
To Find : ( 1 + sin∅ ) / ( 1 - sin∅ )
Solution :
tan∅ = Perpendicular / Base
Perpendicular / Base = 12/5
We can assume that,
- Perpendicular = 12x
- Base = 5x
Applying Pythagoras Theorem,
( Hypotenuse )² = ( Perpendicular )² + ( Base )²
( Hypotenuse )² = ( 12x )² + ( 5x )²
( Hypotenuse )² = 144x² + 25x²
( Hypotenuse )² = 169x²
( Hypotenuse )² = (13x)²
Hypotenuse = 13x
Value of sin∅,
sin∅ = Perpendicular/Hypotenuse
sin∅ = 12x / 13x
sin∅ = 12/13
Solving for required value,
( 1 + sin∅ ) / ( 1 - sin∅ )
Replace sin∅ with 12/13,
( 1 + (12/13) ) / ( 1 - (12/13) )
((13 + 12)/13) / ((13 - 12)/13)
(25/13) / (1/13)
13 gets cancelled out,so
25
Answer : Required value is 25.
Asterinn:
Great!!!!
Similar questions