if tantheta=20/21,show that 1-sintheta+costheta/1+sintheta+costheta=3/7.
Answers
Answered by
16
✯Given:-
- Tan θ = 20/21
✯To prove:-
- 1-sinθ+cosθ/1+sinθ+cosθ=3/7.
✯Proof:-
Formula's used:
⋆ sec²θ - tan²θ = 1
⋆ sin²θ +cos²θ = 1
⋆ cosθ = 1/secθ
Therefore,
→1+tan²θ =sec²θ
Given that tanθ = 20/21
⇒ 1 + (20/21)² = sec²θ
⇒ 1+400/441 = sec²θ
⇒ 441 + 400 /441 = sec²θ
⇒ 841 / 441 =sec²θ
⇒ sec θ = 29/21
Hence,
cosθ = 21/29
Now,substituiting cosθ in the 2nd formula,
→ sin²θ +cos²θ = 1
⇒ sin²θ = 1 - cos²θ
⇒ sin²θ = 1 - (21/29)²
⇒ sin²θ = 1 - 441/841
⇒ sin²θ = 841 - 441 /841
⇒ sin²θ = 400/841
⇒ sinθ = 20/29
We have now found out the values of cosθ &sinθ .
Substituting these values in the given equation:
⇒ (1-sinθ+cosθ)÷(1+sinθ+cosθ)
⇒ [1-(20/29)+(21/29)]÷[1+(20/29)+(21/29)]
⇒ (1 + 1/29 )÷(1+41/29)
⇒ (30/29) ÷ (70/29)
⇒ 30 / 70
⇒ 3/7
Hence proved!
_____________
Answered by
1
Answer:
3/7 is ur answer
hope you have understood the answer
Similar questions