Math, asked by samagrasrivastava160, 8 months ago

if tantheta+cottheta=2 then value of tan^3 theta+1/tan^3 theta

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow\tan\theta+\cot\theta=2\quad\quad\dots(1)

Cubing both sides,

\longrightarrow\left(\tan\theta+\cot\theta\right)^3=2^3

\longrightarrow\tan^3\theta+3\tan^2\theta\cot\theta+3\tan\theta\cot^2\theta+\cot^3\theta=8

Since \cot\theta=\dfrac{1}{\tan\theta},

\longrightarrow\tan^3\theta+3\tan^2\theta\cdot\dfrac{1}{\tan\theta}+3\tan\theta\cdot\dfrac{1}{\tan^2\theta}+\dfrac{1}{\tan^3\theta}=8

\longrightarrow\tan^3\theta+3\tan\theta+3\cdot\dfrac{1}{\tan\theta}+\dfrac{1}{\tan^3\theta}=8

\longrightarrow\tan^3\theta+3\tan\theta+3\cot\theta+\dfrac{1}{\tan^3\theta}=8

\longrightarrow\tan^3\theta+\dfrac{1}{\tan^3\theta}+3\tan\theta+3\cot\theta=8

\longrightarrow\tan^3\theta+\dfrac{1}{\tan^3\theta}+3(\tan\theta+\cot\theta)=8

From (1),

\longrightarrow\tan^3\theta+\dfrac{1}{\tan^3\theta}+3\times2=8

\longrightarrow\tan^3\theta+\dfrac{1}{\tan^3\theta}+6=8

\longrightarrow\underline{\underline{\tan^3\theta+\dfrac{1}{\tan^3\theta}=2}}

Hence 2 is the answer.

Answered by 138548
1

Answer:

answer is in the attachement

Step-by-step explanation:

hope it's helpful

Attachments:
Similar questions