Biology, asked by saksham1663, 11 hours ago

if tanx=1/5, tany=1/239 then the value of tan(4x-y)​

Answers

Answered by tennetiraj86
7

Explanation:

Given :-

Tan x = 1/5

Tan y = 1/239

To find :-

Find the value of Tan (4x-y) ?

Solution :-

Given that

Tan x = 1/5 -------------(1)

Tan y = 1/239 ---------(2)

We know that

Tan 2A = 2 Tan A/(1-Tan² A)

Now,

Tan 2x = 2 Tan x /(1-Tan²x)

=> Tan 2x = 2(1/5)/[1-(1/5)²]

=> Tan 2x = (2/5)/[1-(1/25)]

=> Tan 2x = (2/5)/[(25-1)/25]

=> Tan 2x = (2/5)/(24/25)

=> Tan 2x = (2/5)×(25/24)

=> Tan 2x = (2×25)/(5×24)

=> Tan 2x = 50/120

=> Tan 2x = 5/12 --------(3)

Now,

We know that

Tan 4x = Tan 2(2x)

=> Tan 4x = 2 Tan 2x /(1-Tan²2x)

From (3)

=> Tan 4x = 2(5/12)/[1-(5/12)²]

=> Tan 4x = (10/12)/[1-(25/144)]

=> Tan 4x = (10/12)/[(144-25)/144]

=> Tan 4x = (10/12)/(119/144)

=> Tan 4x = (5/6)/(119/144)

=> Tan 4x = (5/6)×(144/119)

=> Tan 4x = (5×144)/(6×119)

=> Tan 4x = (5×24)/119

=> Tan 4x = 120/119 ---------(4)

Now

We know that

Tan (A-B) = (Tan A- Tan B)/(1+TanA Tan B)

Tan (4x-y) = (Tan 4x-Tan y)/(1+Tan 4xTan y)

On substituting these values in the above formula then

From (2) & (4)

=> Tan (4x-y)

=> [(120/119)-(1/239)]/[1+(120/119)(1/239)]

LCM of 119 and 239 = 28441

=> [{(120)(239)-(1)(119)}/28441]/[1+(120/28441)]

=>[(28680-119)/28441]/[(28441+120)/28441]

=> (28561/28441)/(28561/28441)

=> (28561/28441)×(28441/28561)

=> (28561×28441)/(28561×28441)

=> 1

Therefore, Tan(4x-y) = 1

Answer:-

The value of Tan(4x-y) for the given problem is 1

Used formulae:-

→ Tan 2A = 2 Tan A/(1-Tan² A)

→ Tan (A-B) = (Tan A- Tan B)/(1+TanA Tan B)

Answered by shivasinghmohan629
0

Explanation:

Given that

Tan x = 1/5

Tan y = 1/239

We know that

Tan 2A = 2 Tan A/(1-Tan² A)

Now,

Tan 2x = 2 Tan x /(1-Tan²x)

=> Tan 2x = = 2(1/5)/[1-(1/5)²]

=> Tan 2x = (2/5)/[1-(1/25)]

=> Tan 2x = (2/5)/[(25-1)/25] => Tan 2x = (2/5)/(24/25)

=> Tan 2x = (2/5)x(25/24)

=> Tan 2x = (2×25)/(5×24)

=> Tan 2x = 50/120

=> Tan 2x = 5/12 -(3)

Now,

We know that

Tan 4x = Tan 2(2x)

=> Tan 4x = 2 Tan 2x /(1-Tan²2x)

From (3)

=> Tan 4x = 2(5/12)/[1-(5/12)²]

=> Tan 4x = (10/12)/[1-(25/144)]

=

-(1)

-(2)

  1. U
Similar questions