if tanx = 1 , then find ,
8sin x + 5 cosx by
sin^3x-2 cos^3x+7cosx
Answers
Answered by
27
sec X = √1+ tan2 X
= √1 + 1
= √2
cos X = 1 / √2
sin X = √(1 - cos2 X)
= √1 - (1 / √2)2 = 1 / √2
Now, (8 sin X + 5 sin X) / (sin3 - 2 cos3 + 7 cos X)
[8 x 1 / √2 + 5 x 1 / √2 / (1 / √2)3 - 2 x (1 / √2)3 + 7 x 1 / √2
= [(8 + 5) / √2] / [1 / 2√2 - 2 / 2√2 + 7 / √2]
= [(8 + 5) / √2] / [(1 - 2 + 14) / 2[(8 + 5) / √2]
= (13 x 2) / 13 = 2
• HOPE THIS HELPS YOU •
Similar questions