Math, asked by chandavedic, 22 days ago

If tanx = -3/4 and x lies in fourth quadrant, find sinx/2, cosx/2, tanx/2​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm \: tanx =  -  \frac{3}{4} \:  \: and \: x \: lies \: in \:  {4}^{th}  \: quadrant \\

Now, We know that,

\rm \:  {sec}^{2}x -  {tan}^{2}x = 1 \\

On substituting the value of tanx, we get

\rm \:  {sec}^{2}x -  {\bigg( - \dfrac{3}{4} \bigg) }^{2}= 1 \\

\rm \:  {sec}^{2}x -   \frac{9}{16} = 1 \\

\rm \:  {sec}^{2}x  = 1 +  \frac{9}{16} \\

\rm \:  {sec}^{2}x  = \frac{25}{16} \\

\rm \: secx \:  =  \:  \pm \:  \frac{5}{4}  \\

As it is given that, x lies in 4th quadrant, so secx > 0

\rm\implies \:secx =  \frac{5}{4} \\

\rm\implies \:cosx =  \frac{4}{5} \\

As it is given that x lies in 4th quadrant.

\rm \:  \frac{3\pi}{2}  < x < 2\pi \\

\rm\implies \:\rm \:  \frac{3\pi}{4}  <  \frac{x}{2}  < \pi \\

\rm\implies \: \frac{x}{2} \: lies \: in \:  {2}^{nd} \: quadrant \\

\rm\implies \:sin \frac{x}{2}  > 0, \:  \:  \: and \:  \:  \:  \: cos \frac{x}{2} < 0 \:  \\

Now, we know that

\rm \: cosx =  {2cos}^{2} \frac{x}{2} - 1 \\

On substituting the value of cosx, we get

\rm \:  \frac{4}{5}  =  {2cos}^{2} \frac{x}{2} - 1 \\

\rm \:  \frac{4}{5}   + 1=  {2cos}^{2} \frac{x}{2}  \\

\rm \:  \frac{4 + 5}{5}=  {2cos}^{2} \frac{x}{2}  \\

\rm \:  \frac{9}{10}=  {cos}^{2} \frac{x}{2}  \\

\rm \: cos \frac{x}{2} \:   =  \: \pm \:  \frac{3}{ \sqrt{10} }  \\

As,

\rm \: cos \frac{x}{2} \:  < 0  \\

\rm\implies \:\rm \: cos \frac{x}{2} \:   =  \:  -  \:  \frac{3}{ \sqrt{10} }  \\

Also, we know, that

\rm \: cosx = 1 -  {2sin}^{2} \frac{x}{2}  \\

So, on substituting the value of cosx, we get

\rm \:  \frac{4}{5}  = 1 -  {2sin}^{2} \frac{x}{2}  \\

\rm \:  \frac{4}{5} -  1 =  {2sin}^{2} \frac{x}{2}  \\

\rm \:  \frac{4 - 5}{5} =  {2sin}^{2} \frac{x}{2}  \\

\rm \:   -  \: \frac{1}{5} =  -  \:  {2sin}^{2} \frac{x}{2}  \\

\rm \:    \: \frac{1}{10} =  \:  {sin}^{2} \frac{x}{2}  \\

\rm \: sin \frac{x}{2} \:  =  \:  \pm \:  \frac{1}{ \sqrt{10} }  \\

As,

\rm \: sin \frac{x}{2} \:  > 0  \\

So,

\rm\implies \:\rm \: sin \frac{x}{2} \:  =  \: \frac{1}{ \sqrt{10} }  \\

Now,

\rm \: tan \frac{x}{2}  \\

\rm \: =  \: sin \frac{x}{2}  \div cos \frac{x}{2}  \\

\rm \: =  \:  \frac{1}{ \sqrt{10} }  \div \bigg( -  \frac{ 3 }{10}  \bigg)  \\

\rm \: =  \:  -  \:  \frac{1}{3}  \\

Hence,

\rm\implies \:\rm \: cos \frac{x}{2} \:   =  \:  -  \:  \frac{3}{ \sqrt{10} }  \\

\rm\implies \:\rm \: sin \frac{x}{2} \:  =  \: \frac{1}{ \sqrt{10} }  \\

\rm\implies \:\rm \: tan \frac{x}{2} \:  =  \: \frac{1}{3}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:sin2x = 2sinxcosx \: }} \\

\boxed{\sf{  \:cos2x =  {2cos}^{2}x - 1 = 1 -  {2sin}^{2}x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x }  \: }} \\

\boxed{\sf{  \:tan2x =  \frac{2tanx}{1 -  {tan}^{2}x }  \: }}

\boxed{\sf{  \:sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\sf{  \:cos3x =  {4cos}^{3}x - 3cosx \: }} \\

\boxed{\sf{  \:tan3x =  \frac{3tanx -  {tan}^{3} x}{1 - 3 {tan}^{2} x}  \:  \: }} \\

Similar questions