if tanx=4, find (5sinx-3cosx)/(5sinx+3cosx)
Answers
tan x = 4/1 = p / b
p = 4 , b = 1 (by the using of p and b we find h)
h^ 2 = p^2 + b^ 2
= (4) ^ 2 + (1) ^ 2
= 16 + 1
h = √17
sin x = p / h = 4/√17
cos x = b / h = 1/√17
( 5sinx - 3 cos x ) / ( 5 sin x + 3 cos x)
= ( 5 * 4/√17 - 3*1/ √17) / ( 5* 4/√17 + 3 * 1/ √17)
= ( 20/√17 - 3/√17) / ( 20/√17 + 3/√17)
= (20- 3) / √17 / (20+ 3) / √17
( we cut √17 to√17)
, we get,
20- 3 / 20 + 3
= 17 / 23
Answer:
17/23
Step-by-step explanation:
Given:
tanx = 4
E = (5sinx-3cosx)/(5sinx+3cosx)
(divide numerator and denominator by cosx)
= E = ( (5sinx-3cosx) /cosx ) / ( (5sinx+3cosx) /cosx )
= E = (5sinx/cosx - 3cosx/cosx) / (5sinx/cosx + 3cosx/cosx)
∵ sinx/cosx = tanx
∴ E = (5tanx - 3)/(5tanx + 3)
= E = (5(4) - 3)/(5(4) + 3) {tanx = 4}
= E = (20 - 3)/(20 + 3)
= E = 17/23
∴ Answer = 17/23
Hope, you got it :-))
Please, mark it as brainiest!!