IF tanx=a/b then prove that acos2x+bsin2x=a
Answers
Answered by
2
Step-by-step explanation:
=bcos2x+asin2x
=b[(1-tan^2x)/(1+tan^2x)]+a[2tanx/(1+tan^2x)
=1/(1+tan^2x)[b-btan^2x+2atanx]
=1/1+(a/b)^2[b-b(a/b)+2a×a/b
=b^2/a^2+b^2[b-a^2/b+2a^2/b
=b^2/a^2+b^2[b^2+a^2/b]
=b
Similar questions