if tanx+sinx= m and tanx- sinx= n show that m square- n square =4 underroot mn
Answers
Answered by
0
Answer:
given that
Tanx+sinx=m be equation no 1
Tanx-sinx=n be equation no 2
from equation no 1
Tanx=m-sinx
substitute in equation no 2
m-sinx-sinx=n
m-sinx=n+sinx
squaring on both sides
(m-sinx)2=(n+sinx)2
M2+sin2x-2msinx=n2+sin2x+2nsinx
m2-n2=2msinx+2nsinx
4mnsinx hence proved
Similar questions