Math, asked by jeeadvancediit1, 6 months ago

If tanx + tan 2x + tan 3x = tanxtan2xtan3x , then the general value of x is

Answers

Answered by Ranveerx107
0

\mathfrak{\huge\underline{Answer:}}

tan x + tan 2x + tan 3x = tan x. tan 2x. tan 3x .....(1)

.........................................

∵ tan ( x + 2x ) = tan 3x

∴ ( tan x + tan 2x ) / ( 1 - tan x. tan 2x ) = tan 3x

∴ tan x + tan 2x = tan 3x - tan x. tan 2x. tan 3x

∴ tan x. tan 2x. tan 3x = tan 3x - tan 2x - tan x ............ (2)

.........................................

From (1) and (2),

... tan x + tan 2x + tan 3x = tan 3x - tan 2x - tan x

∴ 2 tan x + 2 tan 2x = 0 ∴ tan x + tan 2x = 0

∴ t + [ 2t / ( 1 - t² ) ] - 0, ..... t = tan x

∴ t - t³ + 2t = 0 ∴ 3t - t³ = 0 ∴ t( 3 - t² ) = 0

∴ t = tan x = 0 or ± √3

∴ x = 0 + nπ or x = ± (π/3) + nπ

Similar questions