Math, asked by 202214423, 8 months ago

if teeta is the angle between the vectors ICAP + 3 J cap + 7 k cap and ICAP - 3 J cap + K cap then cos theta is equal to

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{Vectors are}

\mathsf{\hat{i}+3\hat{j}+7\hat{k}\;\;\&\;\;\hat{i}-3\hat{j}+\hat{k}}

\underline{\textsf{To find:}}

\textsf{The angle between the given two vectors}

\underline{\textsf{Solution:}}

\textsf{Let}

\mathsf{\vec{a}=\hat{i}+3\hat{j}+7\hat{k}}

\mathsf{\vec{b}=\hat{i}-3\hat{j}+\hat{k}}

\mathsf{\vec{a}.\vec{b}=1(1)+3(-3)+7(1)}

\mathsf{\vec{a}.\vec{b}=8-9=-1}

\mathsf{|\vec{a}|=\sqrt{1^2+3^2+7^2}=\sqrt{1+9+49}=\sqrt{59}}

\mathsf{|\vec{b}|=\sqrt{1^2+(-3)^2+1^2}=\sqrt{1+9+1}=\sqrt{11}}

\textsf{Since}\;\mathsf{\theta}\;\textsf{is the angle between the given vectors, we have}

\mathsf{cos\theta=\dfrac{\vec{a}.\vec{b}}{|\vec{a}|\;|\vec{b}|}}

\mathsf{cos\theta=\dfrac{-1}{\sqrt{59}\,\sqrt{11}}}

\mathsf{\theta=cos^{-1}(\dfrac{-1}{\sqrt{59}\,\sqrt{11}})}

\textsf{which is the angle between given vectors}

Find more:

If vector A=2i+2j+3k and vector B=3i-2j-4k, find cross product and angle b/w A and B?​

https://brainly.in/question/22534241

Similar questions