Math, asked by Anonymous, 4 days ago

If  1 + \sin {}^2 \beta = 3 \sin \beta \cos , then the values of  \cot \beta can be:-
(1) 1, - 1
(2) 0, 1
(3) 1, 2
(4) - 1, - 1 ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

 \rm :\longmapsto\:1 +  {sin}^{2}\beta  = 3 \: sin\beta  \: cos\beta

can be rewritten as

\rm :\longmapsto\:\dfrac{1 +  {sin}^{2} \beta }{ {sin}^{2}\beta }  = \dfrac{3 \: sin\beta  \: cos\beta }{ {sin}^{2}\beta }

\rm :\longmapsto\:\dfrac{1}{ {sin}^{2} \beta }  + 1 = 3\dfrac{cos\beta }{sin\beta }

We know,

\boxed{ \tt{ \:  \frac{1}{sinx} = cosecx \: }} \\  \\ and \\  \\ \boxed{ \tt{ \:  \frac{cosx}{sinx} = cotx \: }} \\

So, using these, we get

\rm :\longmapsto\: {cosec}^{2}\beta  + 1 = 3cot\beta

can be rewritten as

\rm :\longmapsto\: ({cot}^{2}\beta  + 1) + 1 = 3cot\beta

\rm :\longmapsto\: {cot}^{2}\beta  + 2 = 3cot\beta

\rm :\longmapsto\: {cot}^{2}\beta -  3cot\beta  + 2 = 0

Now, its a quadratic, so using Splitting of middle terms, we have

\rm :\longmapsto\: {cot}^{2}\beta -  2cot\beta  - cot\beta  + 2 = 0

\rm :\longmapsto\:cot\beta (cot\beta  - 2) - 1(cot\beta  - 2) = 0

\rm :\longmapsto\: (cot\beta  - 2) (cot\beta  - 1) = 0

\rm \implies\:\boxed{ \tt{ \: cot\beta  = 1 \:  \: or \:  \: cot\beta  = 2 \: }}

So, Option (3) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by Anujlri2512H
0

Answer:

option [3] 1,2 is the answer

Similar questions