Math, asked by Anonymous, 1 month ago


If  {2}^{ x + 1}  =  {3}^{ 1 - x} then find the value of x.


Answers

Answered by Anonymous
62

_____________________________

Given :

  •  {2}^{ x + 1} = {3}^{ 1 - x}

To Find :

  • value of x

Solution :

\sf\huge\rightarrowtail  {2}^{ x + 1} = {3}^{ 1 - x}

Taking \log both sides ,

\log  {2}^{ x + 1} = [tex]\log {3}^{ 1 - x}

\sf\huge\implies ( 1 + x ) log² = ( 1 - x ) log³

{ \because log a^{b} = b log a }

\rightarrow (1 + x) (0.3010) = (1 - x) (0.477)

{ \because loge =  \color{red} {0.3010} =

, log3 =  \color{red} {0.477} =

)

\sf\huge\implies \frac{1 + x}{1 - x} =  \color{red} {1.58}

\sf\huge\implies\frac{1 + x}{1 - x} =  \color{red} {1.6}

\sf\huge\implies 1.6 - 1.6 = 1 + x

\sf\huge\implies  \color{red} {0.6} =  \color{red} {2.6x}

\sf\huge\implies x = \frac{0.6}{2.6}

\sf\huge\implies x =  \color{green} {0.23}

Hence, value of x is 0.23

________________________

Final answer :- value of x = 0.23

Note : swipe left to right to see full answer

Attachments:
Answered by HorridAshu
26

_____________________________

Given :

 {2}^{ x + 1} = {3}^{ 1 - x}

To Find :

value of x

Solution :

\sf\huge\rightarrowtail  {2}^{ x + 1} = {3}^{ 1 - x}

Taking \log both sides ,

\log  {2}^{ x + 1} = [tex]\log {3}^{ 1 - x}

\sf\huge\implies ( 1 + x ) log² = ( 1 - x ) log³

{ \because log a^{b} = b log a }

\rightarrow (1 + x) (0.3010) = (1 - x) (0.477)

{\because log2 = 0.3010 , log3 = 0.477}

\sf\huge\implies \frac{1 + x}{1 - x} = 1.58

\sf\huge\implies ] \frac{1 + x}{1 - x} = 1.6

\sf\huge\implies 1.6 - 1.6 = 1 + x

\sf\huge\implies 0.6 = 2.6x

\sf\huge\implies x = \frac{0.6}{2.6}

\sf\huge\implies x = 0.23

Hence, the value of x = 0.23

__________________________

 \color{red} {Final\:Answer} =  \color{green} {0.23}

Similar questions