Math, asked by allmylife, 3 months ago

If 32^{a} = \frac{1}{256^b}} , then find 5a + 8b

Answers

Answered by Anonymous
2

Answer:

32 {}^{a}  =  \frac{1}{256 {}^{b} }  \\ 2 {}^{5 \times a}  =  \frac{1}{2 {}^{8 \times b} }  \\ 2 {}^{5a}  =  \frac{1}{2 {}^{8b} }  \\ 2 {}^{5a}  = 2 {}^{ - 8b}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{1}{x {}^{y} }  = x {}^{ - y}

I hope it will help you.

Now here base is same

So

2 {}^{5a}  = 2 {}^{ - 8b}  \\ 5a =  - 8b \\ 5a + 8b = 0

Similar questions