Math, asked by Anonymous, 6 months ago

If 3x=cosecA and 3/x = cotA, then 3(x^{2} -1/x^{2} )

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
13

\displaystyle\large\underline{\sf\red{Given}}

\displaystyle\sf 3x = cosec \  A

\displaystyle\sf \dfrac{3}{x} = cot \ A

\displaystyle\large\underline{\sf\blue{To \ Find}}

\displaystyle\sf 3(x^2-{\dfrac{1}{x}}^2)

\displaystyle\large\underline{\sf\gray{Solution}}

Here we shall first find the values of x & ¹/x and then simply substitute in the given equation [3(x²-{¹/x}²]

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

\displaystyle\sf 3x = cosec \ A

\displaystyle\sf \purple{x = \dfrac{cosec \ A}{3}}\:\:\: -eq(1)

Similarly,

»» \displaystyle\sf \dfrac{3}{x} = cot \ A

»» \displaystyle\sf \dfrac{1}{x} = cot \ A \times 3

»» \displaystyle\sf \green{\dfrac{1}{x} = \dfrac{cot \ A}{3}}\:\:\: -eq(2)

So then,

\displaystyle\sf 3\bigg\lgroup x^2-{\dfrac{1}{x}}^2\bigg\rgroup

\displaystyle\sf 3\bigg\lgroup (\dfrac{cosec \ A}{3})^2-(\dfrac{cot \ A}{3})^2\bigg\rgroup

[From eq(1) & eq(2)]

\displaystyle\sf 3\bigg\lgroup (\dfrac{cosec^2 \ A}{9})-(\dfrac{cot^2 \ A}{9})\bigg\rgroup

\displaystyle\sf 3\bigg\lgroup \dfrac{cosec^2 \ A - cot^2 \ A}{9}\bigg\rgroup

\displaystyle\small\sf \qquad\quad \because cosec^2 \ A-cot^2 \ A = 1

\displaystyle\sf 3\times \dfrac{1}{9}

\displaystyle\sf \pink{\dfrac{1}{3}}

\displaystyle\sf \therefore\:\underline{\sf The \ value \ of \ 3(x^2-{\dfrac{1}{x}}^2) \ is \ \dfrac{1}{3}}

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
109

\Large{\underline{\underline{\green{\sf Given:}}}}

\sf\star 3x = \cosec A

\sf\star  \dfrac{3}{x} = \cot A

\Large{\underline{\underline{\green{\sf Find:}}}}

\sf\star 3( {x}^{2}  -  \dfrac{1}{ {x}^{2} } )

\Large{\underline{\underline{\green{\sf Solution:}}}}

Here, it is given

\sf\to 3x = \cosec A

\sf\to x =  \dfrac{\cosec A}{3}.......(1)

\sf\mapsto  \dfrac{3}{x} = \cot A

\sf\mapsto  \dfrac{1}{x} = \dfrac{\cot A}{3}........(2)

we, have

\sf\hookrightarrow 3( {x}^{2}  -  \dfrac{1}{ {x}^{2} } )

Use eq(1) and (2)

\sf\hookrightarrow 3( \bigg({\dfrac{\cosec A}{3} \bigg)}^{2}  -  \dfrac{1}{ {x}^{2} } )

\sf\hookrightarrow 3( \bigg({\dfrac{\cosec A}{3} \bigg)}^{2}  - {\bigg(\dfrac{\cot A}{3}\bigg)}^{2}   )

\sf\hookrightarrow 3( \bigg(\dfrac{{\cosec}^{2} A}{3} \bigg)  - \bigg(\dfrac{{\cot}^{2} A}{3}\bigg)  )

\sf\hookrightarrow 3 \bigg(\dfrac{{\cosec}^{2} A - {\cot}^{2} A}{9} \bigg)

\sf\hookrightarrow 3 \bigg(\dfrac{1}{9} \bigg) \qquad  \bigg[ {\cosec}^{2} A - {\cot}^{2}A = 1 \bigg]

\sf\hookrightarrow  \cancel{\dfrac{3}{9}} =  \dfrac{1}{3}

\sf\hookrightarrow  \dfrac{1}{3}

 \small{\sf \therefore 3( {x}^{2}  -  \dfrac{1}{ {x}^{2} } )  = \dfrac{1}{3} }

Similar questions